Od doby, kdy Maman poprvé získal výstup laserového pulsu v roce 1960, lze proces lidské komprese šířky laserového pulsu zhruba rozdělit do tří fází: fáze technologie Q-přepínání, fáze technologie zamykání režimu a fáze technologie zesílení cvrlikání pulzů. Chirped pulse amplification (CPA) je nová technologie vyvinutá k překonání samozaostřovacího efektu generovaného pevnolátkovými laserovými materiály během zesilování femtosekundovým laserem. Nejprve poskytuje ultrakrátké pulzy generované lasery s uzamčeným režimem. "Pozitivní cvrlikání", pro zesílení rozšiřte šířku pulsu na pikosekundy nebo dokonce nanosekundy a poté použijte metodu kompenzace chvílení (negativní cvrlikání) ke komprimaci šířky pulsu po získání dostatečného zesílení energie. Velký význam má vývoj femtosekundových laserů.
Polovodičový laser má výhody malých rozměrů, nízké hmotnosti, vysoké účinnosti elektro-optické konverze, vysoké spolehlivosti a dlouhé životnosti. Má důležité aplikace v oblasti průmyslového zpracování, biomedicíny a národní obrany.
Vědci vyvinuli nový typ laseru, který dokáže vygenerovat velké množství energie v krátkém časovém období, což má potenciální využití v oftalmologii a srdeční chirurgii nebo jemném materiálovém inženýrství. Profesor Martin De Steck, ředitel Institutu fotoniky a optických věd na Univerzitě v Sydney, řekl: Charakteristickým rysem tohoto laseru je, že když se doba trvání pulsu zkrátí na méně než jednu biliontinu sekundy, energie může být také „ okamžitě „Na své špičce je to ideální kandidát pro zpracování materiálů, které vyžadují krátké a silné pulzy.
Nereléový optický přenos na velmi dlouhé vzdálenosti byl vždy aktivním bodem výzkumu v oblasti komunikace pomocí optických vláken. Zkoumání nové technologie optického zesílení je klíčovým vědeckým problémem pro další prodloužení vzdálenosti nereléového optického přenosu.
Náhodně distribuovaný zpětnovazební vláknový laser založený na Ramanově zisku, jeho výstupní spektrum bylo potvrzeno jako široké a stabilní za různých podmínek prostředí a poloha laserového spektra a šířka pásma polootevřené dutiny DFB-RFL jsou stejné jako přidaná bodová zpětná vazba zařízení Spektra jsou vysoce korelovaná. Pokud se spektrální charakteristiky bodového zrcadla (jako je FBG) mění s vnějším prostředím, změní se i spektrum laseru vláknového náhodného laseru. Na tomto principu mohou být vláknové náhodné lasery použity k realizaci funkcí snímání bodu na velmi dlouhé vzdálenosti.
Litografie je technika pro přenos navrženého vzoru přímo nebo přes střední médium na rovný povrch, s výjimkou oblastí povrchu, které nevyžadují vzor.
Copyright @ 2020 Shenzhen Box Optronics Technology Co., Ltd. - China Fiber Optic Modules, vláknité výrobci laserů, dodavatelé laserových komponentů všechna práva vyhrazena.